# 协程

  • 随着之前我们学习的多线程和多进程,但是我们知道无论是创建多进程还是创建多线程来解决问题,都要消耗一定的时间来创建进程、创建线程、以及管理他们之间的切换。随着我们对于效率的追求不断提高,基于单线程来实现并发又成为一个新的课题,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发。这样就可以节省创建线进程所消耗的时间。为此我们需要先回顾下并发的本质:切换+保存状态,cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制):

    • ​ 一种情况是该任务发生了阻塞

    • ​ 一种情况是该任务计算的时间过长

    在介绍进程理论时,提及进程的三种执行状态,而线程才是执行单位,所以也可以将上图理解为线程的三种状态 。

    一:其中第二种情况并不能提升效率,只是为了让cpu能够雨露均沾,实现看起来所有任务都被“同时”执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。

    为此我们可以基于yield来验证。yield本身(tonodo最初版本就是yield实现)就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

    #1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
    #2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换
    
    #串行执行
    import time
    def consumer(res):
        '''任务1:接收数据,处理数据'''
        pass
    def producer():
        '''任务2:生产数据'''
        res=[]
        for i in range(10000000):
            res.append(i)
        return res
    start=time.time()
    #串行执行
    res=producer()
    consumer(res) #写成consumer(producer())会降低执行效率
    stop=time.time()
    print(stop-start) #1.5536692142486572
    
    
    #基于yield并发执行
    import time
    def consumer():
        '''任务1:接收数据,处理数据'''
        while True:
            x=yield
    def producer():
        '''任务2:生产数据'''
        g=consumer()
        next(g)
        for i in range(10000000):
            g.send(i)
    
    start=time.time()
    #基于yield保存状态,实现两个任务直接来回切换,即并发的效果
    #PS:如果每个任务中都加上打印,那么明显地看到两个任务的打印是你一次我一次,即并发执行的.
    producer()
    
    stop=time.time()
    print(stop-start) #2.0272178649902344
    

    二:第一种情况的切换。在任务一遇到io情况下,切到任务二去执行,这样就可以利用任务一阻塞的时间完成任务二的计算,效率的提升就在于此。

    import time
    def consumer():
        '''任务1:接收数据,处理数据'''
        while True:
            x=yield
    
    def producer():
        '''任务2:生产数据'''
        g=consumer()
        next(g)
        for i in range(10000000):
            g.send(i)
            time.sleep(2)
    
    start=time.time()
    producer()  #并发执行,但是任务producer遇到io就会阻塞住,并不会切到该线程内的其他任务去执行
    
    stop=time.time()
    print(stop-star)
    
    #对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。
    
  • 协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

    #1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。
    #2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换
    
    1、协程(本质是一条线程,操作系统不可见)
    2、是有程序员操作的,而不是由操作系统调度的
    3、多个协程的本质是一条线程,所以多个协程不能利用多核
    # 出现的意义 : 多个任务中的IO时间可以共享,当执行一个任务遇到IO操作的时候,
          # 可以将程序切换到另一个任务中继续执行
          # 在有限的线程中,实现任务的并发,节省了调用操作系统创建\销毁线程的时间
          # 并且协程的切换效率比线程的切换效率要高
          # 协程执行多个任务能够让线程少陷入阻塞,让线程看起来很忙
          # 线程陷入阻塞的次数越少,那么能够抢占CPU资源就越多,你的程序效率看起来就越高
    总结:
          # 1.开销变小了
        # 2.效率变高了
    

# 协程概念

  • 协程并不是实际存在的实体,它的本质就是一个线程的多个部分,比线程的单位更小————协程、纤程,一个线程中可以开启多个协程,在执行程序的过程中遇到IO操作就冻结当前位置的状态,去执行其他任务,在执行其他任务过程中会不断的检测上一个冻结的任务是否IO结束,如果IO结束了,就继续从冻结的位置开始执行,
  • 协程的特点:冻结当前程序/任务的执行状态————技能解锁可以规避IO操作的时间
  • 单纯的切换 还是要耗费一些时间的 记住当前执行的状态,但是节省内存
#冻结状态之生成器
def func():
    print(1)
    yield 'aaa'
    print(2)
    yield 'bbb'
    print(3)
    yield 'ccc'
g = func()
next(g)  #1

#列表
def func():
    x = yield 1
    print(x)
    yield 2

g = func()
print(next(g))
print(g.send('aaa'))

#1
#aaa
#2
  • 协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

    • 需要强调的是:

      #1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行	权限,切换其他线程运行)
      #2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非	io操作的切换与效率无关)
      
    • 对比操作系统控制线程的切换,用户在单线程内控制协程的切换:

      优点:
          #1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
          #2. 单线程内就可以实现并发的效果,最大限度地利用cpu	
      缺点:
          #1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线	  	      程内开启协程
          #2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程
          
      总结协程特点:
          1、必须在只有一个单线程里实现并发
          2、修改共享数据不需加锁
          3、用户程序里自己保存多个控制流的上下文栈
          4、附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了	gevent模块(select机制))
      
  • 案例

    def constomer():
        r = '不管叫什么吧'
        while True:
            n = yield r
            if not n:
                return
            print(f'f{n}号机开个包机')
            r = '开好了'
    
    def producer(c):
        c.send(None)
        n = 0
        while n < 5:
            n += 1
            print('您好 需要什么服务?')
            r = c.send(n)
            print(f'{n}号机已经帮您{r},祝您游戏愉快')
        c.close()
    
    c = constomer()
    producer(c)
    

# greenlet模块

  • 简介

    Greenlet是python的一个C扩展,来源于Stackless python,旨在提供可自行调度的‘微线程’, 即协程。generator实现的协程在yield value时只能将value返回给调用者(caller)。 而在greenlet中,target.switch(value)可以切换到指定的协程(target), 然后yield value。greenlet用switch来表示协程的切换,从一个协程切换到另一个协程需要显式指定。

    • greenlet 实现状态切换

      from greenlet import greenlet
      def eat(name):
          print('%s eat 1' %name)
          g2.switch(name)  # 必须传参
          print('%s eat 2' %name)
          g2.switch()
      def play(name):
          print('%s play 1' %name)
          g1.switch()
          print('%s play 2' %name)
      
      g1=greenlet(eat)
      g2=greenlet(play)
      g1.switch('egon')#可以在第一次switch时传入参数,以后都不需要,调用eat,需要不断地传递参数name
      
      #结果
      egon eat 1
      egon play 1
      egon eat 2
      egon play 2
      
    • 单纯的切换(在没有io的情况下或则没有重复开辟内存空间的操作),反而会降低程序的执行速度

      #顺序执行
      import time
      def f1():
          res=1
          for i in range(100000000):
              res+=i
      def f2():
          res=1
          for i in range(100000000):
              res*=i
      
      start=time.time()
      f1()
      f2()
      stop=time.time()
      print('run time is %s' %(stop-start))    #10.985628366470337
      
      #切换
      from greenlet import greenlet
      import time
      def f1():
          res=1
          for i in range(100000000):
              res+=i
              g2.switch()
      def f2():
          res=1
          for i in range(100000000):
              res*=i
              g1.switch()
      
      start=time.time()
      g1=greenlet(f1)
      g2=greenlet(f2)
      g1.switch()
      stop=time.time()
      print('run time is %s' %(stop-start))   # 52.763017892837524
      
      #greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。
      #单线程里的这20个任务的代码通常会既有计算操作又有阻塞操作,我们完全可以在执行任务1时遇到阻塞,就利用阻塞的时间去执行任务2。。。。如此,才能提高效率,这就用到了Gevent模块
      
    • greenlet不是创造协程的模块,它是用来做多个协程任务切换的,它到底是怎么实现切换的呢?

      from greenlet import greenlet
      def func():
          print(123)
       
      def func2():
          print(456)
       
      g1 = greenlet(func)  # 实例化
      g2 = greenlet(func2)
      g1.switch()  # 开始运行,它会运行到下一个switch结束。否则一直运行  结果:123
      
      #复杂点的交叉切换
      from greenlet import greenlet
      def test1():
          print(12)
          gr2.switch()  #可以把switch理解为水龙头的开关,g2开
          print(34)
       
      def test2():
          print(56)
          gr1.switch()   #g1开
          print(78)
       
      gr1 = greenlet(test1)  #执行顺序是根据这里定义的先后,即gr1和gr2的顺序
      gr2 = greenlet(test2)
      gr1.switch()
      
      #执行结果
      #12
      #56
      #34
      #当创建一个greenlet时,首先初始化一个空的栈, switch到这个栈的时候,会运行在greenlet构造时传入的函数(首先在test1中打印 12), 如果在这个函数(test1)中switch到其他协程(到了test2 打印34),那么该协程会被挂起,等到切换回来(在test2中切换回来 打印34)。当这个协程对应函数执行完毕,那么这个协程就变成dead状态。
      #注意:上面没有打印test2的最后一行输出 78,因为在test2中切换到gr1之后挂起,但是没有地方再切换回来。这个可能造成泄漏,后面细说
      
    • greenlet的缺点:1.手动切换;2.不能规避I/O操作(睡眠)

    # gevent模块

    • Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

    • 用法介绍

      g1=gevent.spawn(func,1,2,3,x=4,y=5)  #创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的
      
      g2=gevent.spawn(func2)
      
      g1.join() #等待g1结束
      
      g2.join() #等待g2结束
      
      #或者上述两步合作一步:gevent.joinall([g1,g2])
      
      g1.value  #拿到func1的返回值
      
    • gevent遇到io主动切换 (需要注意的是,必须gevent事先不抓到程序的io阻塞)

      from gevent import monkey;monkey.patch_all()  #这里的猴子是可以抓取下面的所有阻塞,如time
      import threading
      import gevent
      import time
      def eat():
          print(threading.current_thread().getName())
          print('eat food 1')
          time.sleep(2)   #遇到io主动切换到play
          print('eat food 2')
      
      def play():
          print(threading.current_thread().getName())
          print('play 1')
          time.sleep(1)
          print('play 2')
      
      g1=gevent.spawn(eat)
      g2=gevent.spawn(play)
      gevent.joinall([g1,g2])
      print('主')
      
      #结果
      DummyThread-1   #dummy 假的;仿制品,所以可以知道是假进程
      eat food 1
      DummyThread-2
      play 1
      play 2
      eat food 2
    • 详细解读gevent

      import gevent
      def eat():
          print('eating1')
          print('eating2')
      g1 = gevent.spawn(eat)  #创建一个协程对象g1
      #结果:为空,不会执行,因为没有遇到阻塞
      
      -------------------------------------------------
      import gevent
      def eat():
          print('eating1')
          print('eating2')
      g1 = gevent.spawn(eat)  #创建一个协程对象g1
      g1.join()  #等待g1结束
      #结果:eating1   eating2
      
      ------------------------------------------------
      #当使用time时,gevent并抓不到这个阻塞
      import time
      import gevent
      def eat():
          print('eating1')
          time.sleep(1)
          print('eating2')
       
      def play():
          print('playing1')
          time.sleep(1)
          print('playing2')
       
      g1 = gevent.spawn(eat)  #创建一个协程对象g1
      g2 = gevent.spawn(play)
      g1.join()  #等待g1结束
      g2.join()
      
      #执行输出:
      #eating1
      #eating2
      #playing1
      #playing2
      
      -----------------------------------------------
      #使用gevent的阻塞的time才能抓取
      import time
      import gevent
      def eat():
          print('eating1')
          gevent.sleep(1)  #延时调用
          print('eating2')
       
      def play():
          print('playing1')
          gevent.sleep(1)  #延时调用
          print('playing2')
       
      g1 = gevent.spawn(eat)  #创建一个协程对象g1
      g2 = gevent.spawn(play)
      g1.join()  #等待g1结束
      g2.join()
      #执行输出:
      eating1
      playing1
      eating2
      playing2
      
    • 猴子补丁

      #如果想让协程执行time.sleep()呢?由于默认,协程无法识别time.sleep()方法,需要导入一个模块monkey
      
      from gevent import monkey;monkey.patch_all()
      # 它会把下面导入的所有的模块中的IO操作都打成一个包,gevent就能够认识这些IO了
      import time
      import gevent
      def eat():
          print('eating1')
          time.sleep(1)  #延时调用
          print('eating2')
       
      def play():
          print('playing1')
          time.sleep(1)  #延时调用
          print('playing2')
       
      g1 = gevent.spawn(eat)  #创建一个协程对象g1
      g2 = gevent.spawn(play)
      g1.join()  #等待g1结束
      g2.join()
      #执行输出:
      eating1
      playing1
      eating2
      playing2
      
    • 结论

      • 使用gevent模块来执行多个函数,表示在这些函数遇到IO操作的时候可以在同一个线程中进行切换 利用其他任务的IO阻塞时间来切换到其他的任务继续执行
      • spawn来发布协程任务join负责开启并等待任务执行结束 gevent本身不认识其他模块中的IO操作,但是如果我们在导入其他模块之前执行from gevent import monkey;monkey.patch_all() 这行代码,必须在文件最开头gevent就能够认识在这句话之后导入的模块中的所有IO操作了
  • Gevent的同步与异步

    from gevent import spawn,joinall,monkey;monkey.patch_all() 
    import time
    def task(pid):
        time.sleep(0.5)
        print('Task %s done' % pid) 
     
    def synchronous():  # 同步
        for i in range(10):
            task(i)
     
    def asynchronous(): # 异步
        g_l=[spawn(task,i) for i in range(10)]
        joinall(g_l)
        print('DONE')
         
    if __name__ == '__main__':
        print('Synchronous:')
        synchronous()  #前者打印完,才执行后面
        print('Asynchronous:')
        asynchronous()
    #  上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。
    #  初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,
    #  后者阻塞当前流程,并执行所有给定的greenlet任务。执行流程只会在 所有greenlet执行完后才会继续向下走。
    
  • Gevent的应用举例

    #爬虫
    url_dic = {
        '协程':'http://www.cnblogs.com/Eva-J/articles/8324673.html',
        '线程':'http://www.cnblogs.com/Eva-J/articles/8306047.html',
        '目录':'https://www.cnblogs.com/Eva-J/p/7277026.html',
        '百度':'http://www.baidu.com',
        'sogou':'http://www.sogou.com',
        '4399':'http://www.4399.com',
        '豆瓣':'http://www.douban.com',
        'sina':'http://www.sina.com.cn',
        '淘宝':'http://www.taobao.com',
        'JD':'http://www.JD.com'
    }
    import time
    from gevent import monkey;monkey.patch_all()
    from urllib.request import urlopen
    import gevent
    
    def get_html(name,url):
        ret = urlopen(url)
        content = ret.read()
        with open(name,'wb') as f:
            f.write(content)
    
    start = time.time()
    for name in url_dic:
        get_html(name+'_sync.html',url_dic[name])
    ret = time.time() - start
    print('同步时间 :',ret)
    
    start = time.time()
    g_l = []
    for name in url_dic:
        g = gevent.spawn(get_html,name+'_async.html',url_dic[name])
        g_l.append(g)
    gevent.joinall(g_l)
    ret = time.time() - start
    print('异步时间 :',ret)
    
    #同步时间 : 5.821720123291016
    #异步时间 : 4.347508907318115
    
    -------------------------------------------------------
    #聊天工具实例
    #服务端
    from gevent import monkey;monkey.patch_all()
    import socket
    import gevent
    def async_talk(conn):
        try:
            while True:
                conn.send(b'hello')
                ret = conn.recv(1024)
                print(ret)
        finally:conn.close()
            
    sk = socket.socket()
    sk.bind(('127.0.0.1',9000))
    sk.listen()
    while True:
        conn,addr = sk.accept()
        gevent.spawn(async_talk,conn)  
    sk.close()
    
    #客服端
    import socket
    from threading import Thread
    def socket_client():
        sk = socket.socket()
        sk.connect(('127.0.0.1',9000))
        while True:
            print(sk.recv(1024))
            sk.send(b'bye')
        sk.close()
    for i in range(500):
        Thread(target=socket_client).start()
    
  • 考试题

    #第一题: 有⼀个csv⽂件erotic.csv中共存在271万多条数据,请获取其中的subscription_id,并使⽤线程池为每100条数据创建⼀个线程去处理(打印,或
    # 通过爬⾍提交到某处), erotic.csv ⽂件的格式为
    # subscription_id,erotic,num
    # UCURGHWsDe7S-vufCAq9Rfw,5,1
    
    from concurrent.futures import ThreadPoolExecutor
    import threading
    POOL = ThreadPoolExecutor(50)
    def task(subscription_id_group):
        print(threading.current_thread(),subscription_id_group)
    def distribute(subscription_id=None,finish=False,subscription_id_group=[]):
        if subscription_id:
            subscription_id_group.append(subscription_id)
        if finish or len(subscription_id_group) == 100:
            new_subscription_id_group = subscription_id_group.copy()
            POOL.submit(task,new_subscription_id_group)
            subscription_id_group.clear()
    def run():
        is_first_line = True
        file_object = open('xxx.csv',mode='r')
        for line in file_object:
            if is_first_line:
                is_first_line=False
                continue
            subscription_id = line.split(',')[0]
            distribute(subscription_id)
        distribute(subscription_id=None,finish=True)
        file_object.close()
    if __name__ == '__main__':
        run()
        
    # 第二题:手写一个基于tcp的socket程序,客户端输入任意一个网址发送致server端,在server端访问网页,并将网页源码返回给客户端(
    # 避免粘包问题)
    import socket
    from urllib import request
    from threading import Thread
    import struct
    
    def get_page(urls):
        ret = request.urlopen(urls)
        connect = ret.read()
        return connect
    
    def talk(conn):
        while 1:
            urls = conn.recv(1024).decode('utf-8')
            ret = get_page(urls)
            num = struct.pack('i',len(ret))
            conn.send(num)
            while len(ret):
                conn.send(ret[0:1024])
                ret = ret[1024:]
                
    sk = socket.socket()
    sk.bind(('127.0.0.1', 9009))
    sk.listen()
    while 1:
        conn, addr = sk.accept()
        t = Thread(target=talk, args=(conn,))
        t.start()
        
    #客户端    
     import socket
     import struct
     sk = socket.socket()
     sk.connect(('127.0.0.1',9009))
     while 1:
           url = input("网址:")
           sk.send(url.encode("utf-8"))
           str = ''
           l_num=struct.unpack('i',sk.recv(1024))[0]
           while 1024<l_num:
              str += sk.recv(1024).decode('utf-8')
              l_num -= 1024
           else:str += sk.recv(1024).decode('utf-8')
           print(str)    
    
  • # 默写

    # 1.进程 线程 协程之间的相同点和不同点
          # 进程 : 内存隔离 操作系统级别 开销大 可以利用多核 计算机中资源分配的最小单位
          # 线程 : 内存共享 操作系统级别 开销中 Cpython解释器下不能利用多核 计算机中CPU调度的最小单位
          # 协程 : 内存共享 用户级别     开销小 不能利用多核
      
          # 协程 : 生产者消费者模型  进程模块提供的队列joinablequeue
              # from queue import Queue
          # 相同点 : 都能够帮助我们实现并发操作,规避IO时间,提高程序执行效率
      
      # 2.进程内存之间是否共享,如何实现通信
          # 不共享
          # 基于文件
              # 队列 管道 manager
          # 基于网络
              # 第三方工具(redis kafka memcache rabbitMQ) socket
      
      # 3.在python中是否线程安全
          # 不安全
          # python你写的python代码未来都会转换成机器码,机器码执行的过程中
          # 如果有一个非原子性操作,那么就会导致线程数据不安全
          # 需要手动加锁来解决问题
      
      # 4.协程的本质是什么
          # 多个任务在一条线程上能够实现切换
      
      # 5.线程池开启任务
          # 如何开启线程池,如何提交任务,获取返回值
      from concurrent.futures import ThreadPoolExecutor
      def func(arg):
           return arg * 20
      
      tp = ThreadPoolExecutor(5)
      ret_l = []
      for i in range(100):
           ret = tp.submit(func,i)
           ret_l.append(ret)
       for r in ret_l:
           print(r.result())
      
      # 法二
      from concurrent.futures import ThreadPoolExecutor
      def func(arg):
          return arg * 20
      
      tp = ThreadPoolExecutor(5)
      ret_l = tp.map(func,range(100))
      for r in ret_l:
          print(r)
      
      # 协程复习 :
      # 数据是否安全  :  绝对安全
      
    

四、生成器————>asyncio模块 asyncio学习